
COMP SCI 3004/7064 Operating Systems Semster 2, 2008

Practical 3: Filesystem access

Due date: 5pm Thursday 30 October

In this practical, you will implement several system calls and library functions that permit
processes to access data stored in a file system. These will all follow the same semantics as
those of UNIX, so that code intended to run in a normal UNIX environment that uses these
calls can run under the example kernel that we have been using in the course.

Rather than accessing a hard disk, the filesystem support code will simply use a RAM disk,
in which all of the data for the filesystem is loaded into memory at boot time. The filesystem
can essentially be treated like a normal tree in memory, in that you can traverse it by following
pointers and inspecting various fields of the nodes. The system calls that you implement will
access this data structure directly. For simplicity, the filesystem data structures are designed
for read-only access, so you will not need to implement support for writing to files or creating
directories.

The functions you must implement in this assignment are as follows. Each of these are de-
scribed in their respective man pages.

• chdir

• getcwd

• open

• close

• read

• opendir

• readdir

• closedir

The close and read system calls are already present in the sample code, but will need to be
extended to support accessing files. Note that it is not necessary to implement write, although
it will need to return an error code if used on a file handle. The fscalls.c file in the sample
code includes an implementation of stat, which demonstrates how to perform basic filesystem
access within a system call. Your implementations of the above functions should all go in
fscalls.c.

1

COMP SCI 3004/7064 Operating Systems Semster 2, 2008

/

etc home usr var tmp

bin lib shareservices ttys profile

grepfind who

Figure 1: A typical UNIX filesystem tree

The opendir, readdir, and closedir functions are not actually system calls, but instead must
be implemented as library functions. The reason is that they need to allocate an object on the
heap (a DIR structure), which is used by each of the functions. These rely on another system
call named getdent which you will also need to implement in the last stage of the assignment.
This part of the assignment is discussed further in Section 5.3.

1 Filesystem structure

Version 8 of the kernel contains the data structure definitions and helper functions for accessing
the filesystem. The format in which these are arranged is designed to be as simple as possible,
and is essentially just a concatenation of all the files together in memory, along with arrays of
directory entries specifying the name and location of each file. This format is much simpler
than that used by most other file systems, since it is not intended to support modification of
files or directories.

The filesystem image is structured as a tree. Each file or directory is represented as a node
in the tree, with the root node corresponding to the root directory (/). Directories are branch
nodes, and can contain an arbitrary number of files and other directories. Files are leaf nodes,
consisting of an array of binary data that corresponds to the contents of the file. A sample
filesystem tree, based on files commonly found on UNIX systems, is shown in Figure 1.

Each node within the tree, whether it is a file or directory, is represented by a directory entry.
This contains various properties such as the type, name, size, and location. For directory entries
of type file, the location refers to an offset relative to the start of the filesystem image at which
the contents of the file may be found. The actual data can be obtained by pointer arithmetic, by
taking the address in memory of the filesystem image and adding the location to this address.
For directory entries of type directory, the location is also an offset relative to the filesystem
start, but points to a directory structure containing the number of files in that directory, and
an array of directory entries. The C structs for directory entries and directories are defined in
filesystem.h as follows1:

typedef struct directory_entry {
unsigned int size; /* size of file/directory in bytes */

1__attribute__ ((packed)) just tells the compiler to store these structures directly adjacent to each other
in memory, without padding

2

COMP SCI 3004/7064 Operating Systems Semster 2, 2008

unsigned int type; /* either TYPE_DIR or TYPE_FILE */
unsigned int location; /* offset from start of file system */
unsigned int mode; /* permission bits */
unsigned int mtime; /* modification time */
char name[MAX_FILENAME_LEN+1]; /* file or directory name */

} __attribute__ ((packed)) directory_entry;

typedef struct directory {
unsigned int count;
directory_entry entries[0];

} __attribute__ ((packed)) directory;

Note that although the entries field in the directory struct is declared to have 0 elements,
the directory struct is just a way of telling the compiler how to access memory at a particular
address. When the filesystem is built, the correct amount of space will be allocated at the
location of the directory struct to allow for the necessary number of entries. It is thus possible
to access elements entries[n] for any value of n less than count.

2 Helper functions

Only two functions are needed to implement the back-end logic of the filesystem, both of which
are provided for you in filesystem.c:

int get_directory_entry(const char *filesystem, const char *path,
directory_entry **entry);

void relative_to_absolute(char *abs, const char *base,
const char *rel, int max);

get_directory_entry retrieves the directory entry associated with a given path name. The
first parameter is the address in memory at which the filesystem image begins. The path pa-
rameter must be an absolute path, i.e. one that starts with the root directory (/). The entry
parameter is an output parameter in which a pointer to the directory entry will be placed, pro-
vided that it exists. This function returns 0 on success, or a negative error code if the requested
file or directory could not be found. Upon success, the entry pointer can then be used to exam-
ine the contents of the directory or file, depending on its type.

relative_to_absolute resolves a relative path to its absolute version, according to the spec-
ified base path. For example, if the base path is /home/peter and the relative path is ../cruz,
then the absolute path returned by this function would be /home/cruz. The abs parameter is a
fixed size buffer of length max supplied by the caller, in which the resulting absolute path will
be stored by the function. Since the system calls you are to implement need to work relative to
the process’s current directory, you will need to use this function to obtain absolute path names
for use with get_directory_entry.

3 The fstool program

Version 8 of the sample code includes a program called fstool, which serves two purposes.
The first is to demonstrate how to use the filesystem routines to access files, get directory

3

COMP SCI 3004/7064 Operating Systems Semster 2, 2008

listings, and traverse the tree. Reading through this code will give you an understanding of
what your system calls will need to do in order to access the filesystem. The second purpose
of fstool is to allow you to build filesystem images for testing. It does this by constructing a
filesystem image in memory based on the contents of a specified directory, and then saving this
to disk. fstool can be run directly under Linux.

The program can run in four different modes, depending on the command-line arguments used
to invoke it:

• fstool -build <imagefile> <directory>

This creates a file system image in the file called imagefile, consisting of all of the files
and subdirectories contained within directory on the local file system. The image file
can then be copied on to the GRUB boot disk image, so that it will be loaded at boot time
into memory. This can be done as follows:

mcopy -i grub.img <imgfile> ::

• fstool -dump <imagefile>

Prints out the full directory tree contained in the filesystem image imagefile

• fstool -get <imagefile> <filename>

Extracts a particular file from a filesystem image

• fstool -shell <imagefile>

Implements a basic UNIX-like shell with which you can browse the filesystem image.
The commands ls, cat, cd, and pwd are supported, and work in much the same way as
their UNIX counterparts, but do not handle command-line switches.

Examining the source code for fstool will give you several of examples of how to use the
get_directory_entry and relative_to_absolute functions. The way in which your sys-
tem calls make use of these functions will be in a similar manner to how they are used in
fstool.

4 The shell

In order to test out your system calls, you are given a basic shell which runs on kernel startup
and allows the user to browse the file system. It works identically to the shell in fstool, and
thus supports the ls, cat, cd, and pwd, and find commands. The difference between the two
is that this shell runs under the example kernel, and uses system calls to access the filesystem
data. This shell is implemented in sh.c. You should not need to modify this file in order to get
your code to work, though it may be useful to add debugging code here if you need to during
development.

4

COMP SCI 3004/7064 Operating Systems Semster 2, 2008

5 What you need to do

All of your system calls must be implemented in the file fscalls.c. This is already present in
version 8 of the sample code, and contains an example system call called stat, which retrieves
information about a file. Function prototypes in user.h for all of the system calls, and their
assembly language stubs in calls.s have also been provided to you already. For stage 3 of
the assignment, you should add the user space library functions to libc.c, and the getdent
system call to fscalls.c.

When adding a new system call, you will need to add the appropriate function to fscalls.c,
as well as edit the syscall function to add an additional case which calls your function to the
switch statement.

5.1 Stage 1: Current working directory (20%)

Under most operating systems, each process has a property called the current working direc-
tory. You will be familiar with this concept from the UNIX shell, where you can move about
the filesystem by changing your current working directory using the cd command, and print
it out to the terminal using the pwd command. This property of processes makes it easier to
reference files, since you can use relative path names instead of specifying the full absolute
path name every time.

For this stage, you must do the following:

• Add a field to the process structure that records the current working directory of the
process.

• Implement the chdir system call to change the current working directory of the process.
This should check that the directory actually exists before changing to it, and return an
error if it cannot be found. It should also return an error if the pathname refers to a
file instead of a directory. Note that the path name accepted by chdir is relative to the
existing working directory of the process.

• Implement the getcwd system call, which allows processes to query their current work-
ing directory. You must be careful to respect the size limit specified for the output string,
to avoid writing beyond the end of memory that a process may have allocated.

• Modify the stat system call so that the path name it accepts is treated as being relative
to the current working directory.

You may consult the UNIX man pages to get further details about how these and other system
calls are supposed to work. Note that for some calls you may need to explicitly specify the
system calls section of the manual (section 2), e.g. man 2 chdir.

5.2 Stage 2: Reading files (50%)

Files are accessed via file handles, which we have already seen in version 7 of the kernel, when
pipes were introduced. The read and write system calls both take a file descriptor as their

5

COMP SCI 3004/7064 Operating Systems Semster 2, 2008

first parameter, which refers to a file handle within the kernel. This enables a process to have
different files, pipes etc. open at the same time, and selectively choose which one it wants to
read from or write to.

The open system call creates a new file handle which refers to a file. This file handle is ref-
erenced by a file descriptor, which is passed back to the process for use in later calls to read
or write. For files, each file handle keeps track of the current position in that file, such that
when read or write is called, the position is advanced by the appropriate amount. When a
process first opens a particular file, its position is initialised to 0. If it then reads, say, 1024
bytes from the file, then the position will be advanced by 1024, and the next read will begin at
that position.

To add support for accessing files, you will need to do the following:

• Add a function to create a new type of file handle, used for accessing files. This will
be similar to those used for creating pipe handles - it must set the appropriate function
pointers for read, write, and destroy, so that the respective system calls will be able
to call these when the file handle is passed to them. These file handles should have some
way to record information about which file they are accessing, and the current position
within that file.

• Implement the open system call. This takes a relative path name as a parameter, and
returns either a file descriptor that can be used to access the file, or a negative value
indicating an error. In the latter case, the error code should be one of the E* macros
defined near the bottom of constants.h, such as ENOENT.

• Implement the read function to be used with your file handles. Note that you will need
to correctly handle the case where the end of file is reached; consult the man page for an
explanation of what must happen in this case.

• Implement the write function for your file handles, which just returns -EBADF to indicate
that the file is not writable.

• Implement the destroy function to get rid of the file handle. This should free all kernel
memory that has been allocated for the file handle.

You can test your code by using the cat command in the shell, which allows you to view the
contents of a particular file.

5.3 Stage 3: Reading directories (20%)

UNIX provides a set of three functions for reading the contents of directories. These are:

DIR *opendir(const char *filename);
struct dirent *readdir(DIR *dirp);
int closedir(DIR *dirp);

Notice that these are similar to the open/read/close functions used for reading from files,
except that instead of using file descriptors, they use an object of type DIR. The main reason for
that is so that readdir is able to return a structure containing the properties of a file, without

6

COMP SCI 3004/7064 Operating Systems Semster 2, 2008

requiring the programmer to explicitly allocate memory for it like they have to for obtaining
file data from read. These are not implemented as system calls, because system calls cannot
use malloc to allocate data within a process’s heap.

The opendir, closedir, and readdir functions are all just simple wrappers around the open,
close, and getdent system calls. open and close are used exactly as they are for files; the
opendir wrapper simply opens a directory, gets a file descriptor back, and stores it in a newly
allocated DIR object. closedir closes the file descriptor and frees the memory. The getdent
system call, which you will also need to implement, operates very similarly to read, except
that instead of returning an arbitrary amount of binary data, it stores the information about a
directory entry in the supplied dirent structure.

When implementing getdent, keep in mind that the file handle will need to keep track of its
position within the directory, not a file. This is best recorded as an index into the array of
directory entry objects associated with the directory. getdent should return 1 whenever there
was another directory entry that it was able to place the name of into the supplied dirent
structure, and 0 when there are no more directory entries available. getdent should return the
error code -ENOTDIR if invoked with a file handle that refers to a file, instead of a directory.

You can test your implementation of these functions with the ls and find commands from
within the shell.

5.4 Code well (10%)

10% of the marks for this assignment are given for coding style. It is expected that you will
neatly structure and properly comment the code, so that it easy to read and understand. You
should use the existing sample code as a guideline as to how you should structure your code.
Additionally, you should also make sure that you have paid attention to detail in your code,
with respect to things like properly handling error conditions and validating input data.

5.5 Testing

There are no automated tests provided for this assignment. You should perform your own
testing using the provided cd, pwd, ls, find, and cat commands, and using one or more other
programs that you write to ensure the proper error codes are returned when appropriate.

6 Submission

Note: Your submission for this assignment should be based on the supplied code for ver-
sion 8 of the kernel, not your code from assignment 2. You should download the code
again from the web site, as it has recently been updated with a bug fix.

Your code should be checked into your SVN repository, and submitted via the web submission
system in the same manner as for assignments 1 and 2.

To create a directory in your SVN repository for the prac, type the following command, all on
one line (replacing aXXXXXXX with your own username):

7

COMP SCI 3004/7064 Operating Systems Semster 2, 2008

svn mkdir -m "OS prac 3"
https://version-control.adelaide.edu.au/svn/aXXXXXXX/os-08-s2-prac3/

Then type:

svn co https://version-control.adelaide.edu.au/svn/aXXXXXXX/os-08-s2-prac3/

This will place a checkout of the (empty) os-08-s2-prac3 directory into your current working
directory. Next, copy all of the supplied files from version 8 of the kernel into this directory,
and run the following commands:

cd os-08-s2-prac3
svn add *
svn commit -m "Initial import of supplied code for assignment 3"

Then work on your the code from this directory, and commit as appropriate. To submit the
assignment, go to https://cs.adelaide.edu.au/for/students/automark/ and follow
the prompts to get to OS practical 3, then click on “Make A New Submission For This As-
signment”. Read through the declaration form, and click on “I Agree” to indicate that you
understand the policies relating to plagiarism. Your assignment will be marked manually once
the due date has arrived.

Peter Kelly & Cruz Izu, October 2008

8

https://cs.adelaide.edu.au/for/students/automark/

	Filesystem structure
	Helper functions
	The fstool program
	The shell
	What you need to do
	Stage 1: Current working directory (20%)
	Stage 2: Reading files (50%)
	Stage 3: Reading directories (20%)
	Code well (10%)
	Testing

	Submission

