
COMP SCI 3004/7064 Operating Systems Semster 2, 2008

Practical 2: Inter-process communication

Due date: 5PM, Tuesday 7th October

Your task in this assignment is to implement a message passing facility in the AdelaideOS
kernel, based on the following system calls:

• int send(pid_t to, unsigned int tag, const void *data, size_t size);

Sends a message to the specified process. tag is an application-defined value indicating
the type of the message. data and size specify the contents and size of the message,
respectively. The maximum size is 1024 bytes. send returns 0 on success, or -1 on error
(setting errno appropriately). It should never block.

• int receive(message *msg, int block);

Receives a message sent to the current process. If a message is available immediately, its
sender, tag, size, and data are stored in the message structure. Otherwise, the behaviour
depends on the value of block. If true, the calling process is suspended until a message
arrives. If false, the function returns immediately with a result of -1, and errno set to
EAGAIN.

The message structure is defined as follows:

#define MAX_MESSAGE_SIZE 1024
typedef struct message {
pid_t from;
unsigned int tag;
size_t size;
char data[MAX_MESSAGE_SIZE];

} message;

For this assignment, you should modify version 8 of the kernel, available at:

https://cs.adelaide.edu.au/users/third/os/2008-s2/kernel/

Note: These files have recently been updated; if you downloaded them before 21 August you
should get the latest copy. A tar.gz file is also available in this directory containing all of the
source files.

In preparing for this assignment you will also need to familiarise yourself with the overall
structure of the kernel. The best way to do this is to read through the documentation available
at the URL below. You won’t need to understand all of this material for the purposes of the
assignment, though you are encouraged to read through this to better understand the concepts
covered in the course.

https://cs.adelaide.edu.au/users/third/os/2008-s2/handouts/guide.pdf

1

https://cs.adelaide.edu.au/users/third/os/2008-s2/kernel/
https://cs.adelaide.edu.au/users/third/os/2008-s2/handouts/guide.pdf


COMP SCI 3004/7064 Operating Systems Semster 2, 2008

Process 1's memory Process 2's memory

Kernel memory

Mailbox for 
process 1

Mailbox for 
process 2

Array containing 
outgoing 

message data

Array in which to 
store incoming 
message data

send system call receive system call

Figure 1: Message transfer

Stage 1: Message queue representation

You will first need to decide how to implement message transmission. The approach you should
use is to have a message queue, or mailbox, associated with each process. This resides in
kernel memory, which is separate from the private memory of each process. Because it is not
possible for processes to directly access kernel memory, messages must be copied to and from
the mailboxes via the send and receive system calls. Figure 1 depicts the way in which this
should occur.

One or more fields will need to be added to the process struct, defined in kernel.h. These
should point to a data structure holding the messages, each of which is represented by a
message struct as shown above. You can use whatever data structure you like to store these,
e.g. an array or linked list. Your implementation should place a reasonable limit on the maxi-
mum number of messages that can be stored in a queue at a time. If the send call encounters
a full message queue on its destination, it should return with an error (see the section on error
handling below for more details).

Stage 2: Send and non-blocking receive (30%)

In this stage, you must implement the send and receive functions that work in non-blocking
mode. This means that the functions should return immediately, whether or not they were able
to complete successfully. send simply needs to append the message to the queue (if there is
sufficient space). receive needs to either remove the first message from the queue and return
it to the process, or return an error code indicating that the queue is empty.

The first few tests supplied as part of the sample code only use non-blocking operation, so you
can test this functionality before adding support for blocking.

2



COMP SCI 3004/7064 Operating Systems Semster 2, 2008

Stage 3: Blocking receive (30%)

In this stage, when receive is invoked with block set to true, it should suspend the calling
process if no messages are available yet. You will also need to modify the send system call so
that when it adds a message to the queue, it detects the case where the destination process is
blocked on a call to receive, and wakes it up if necessary.

Error handling (10%)

Your code must handle the following error conditions:

System call Condition errno value
send Invalid message size specified (i.e. greater than

MAX_MESSAGE_SIZE bytes)
EINVAL

send Supplied pointer is outside the calling process’s address
space

EFAULT

send Specified process does not exist ESRCH
receive No message available (non-blocking mode only) EAGAIN
receive Supplied pointer is outside the calling process’s address

space
EFAULT

Testing

The file mptest.c contains a number of routines that can be used to test the message passing
functionality. When the kernel boots, you can run this from the shell by typing mptest. These
are the same tests that automark runs when you submit your code, and your marks for the
implementation part of this assignment will be based on how many of these produce the correct
results.

Report (30%)

You must write a brief report (around 2-3 pages) describing how you have gone about imple-
menting message passing. This should include a justification of the design choices with respect
to mailbox representation and blocking. Your report should be well presented, and structured
into at least 3 sections including an introduction and conclusion.

The writing should be aimed at a reader who understands the general concepts of IPC and
message passing, but is not familiar with this particular assignment or the AdelaideOS kernel. It
should therefore explain any implementation-specific details that are relevant to the discussion.
The report should also mention at least one way in which the design of the message passing
system could be improved.

Your report must be submitted in PDF format. If you are using LATEX, you can generate PDFs
using pdflatex, which is available on the Linux machines. OpenOffice under Linux and MS
Word for the Mac are also capable of generating PDFs.

3



COMP SCI 3004/7064 Operating Systems Semster 2, 2008

Submission

The code and your report should both be checked into your SVN repository, and submitted via
the web submission system in the same manner as for assignment 1.

To create a directory in your SVN repository for the prac, type the following command, all on
one line (replacing aXXXXXXX with your own username):

svn mkdir -m "OS prac 2"
https://version-control.adelaide.edu.au/svn/aXXXXXXX/os-08-s2-prac2/

Then type:

svn co https://version-control.adelaide.edu.au/svn/aXXXXXXX/os-08-s2-prac2/

This will place a checkout of the (empty) os-08-s2-prac2 directory into your current working
directory. Next, copy all of the supplied files from version 8 of the kernel into this directory,
and run the following commands:

cd os-08-s2-prac2
svn add *
svn commit -m "Initial import of supplied code for assignment 2"

Then work on your the code from this directory, and commit as appropriate. To submit the
assignment, go to https://cs.adelaide.edu.au/for/students/automark/ and follow
the prompts to get to OS practical 2, then click on “Make A New Submission For This As-
signment”. Read through the declaration form, and click on “I Agree” to indicate that you
understand the policies relating to plagiarism. Your assignment will then be processed by the
automated marking system, with the results displayed on the page after some delay. The report
will be marked separately.

Peter Kelly & Cruz Izu, August 2008

4

https://cs.adelaide.edu.au/for/students/automark/

